REGCOMP(3C) Standard C Library Functions REGCOMP(3C)

regcomp, regexec, regerror, regfree
regular-expression library

Standard C Library (libc, -lc)

#include <regex.h>

int
regcomp(regex_t *restrict preg, const char *restrict pattern, int cflags);

int
regexec(const regex_t *restrict preg, const char *restrict string, size_t nmatch, regmatch_t pmatch[restrict], int eflags);

size_t
regerror(int errcode, const regex_t *restrict preg, char *restrict errbuf, size_t errbuf_size);

void
regfree(regex_t *preg);

These routines implement IEEE Std 1003.2 (“POSIX.2”) regular expressions; see regex(7). The regcomp() function compiles an RE written as a string into an internal form, regexec() matches that internal form against a string and reports results, regerror() transforms error codes from either into human-readable messages, and regfree() frees any dynamically-allocated storage used by the internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t, the former for compiled internal forms and the latter for match reporting. It also declares the four functions, a type regoff_t, and a number of constants with names starting with “REG_”.

regcomp()

The regcomp() function compiles the regular expression contained in the pattern string, subject to the flags in cflags, and places the results in the regex_t structure pointed to by preg. The cflags argument is the bitwise OR of zero or more of the following flags:
Compile extended regular expressions (EREs), rather than the basic regular expressions (BREs) that are the default.
This is a synonym for 0, provided as a counterpart to REG_EXTENDED to improve readability.
Compile with recognition of all special characters turned off. All characters are thus considered ordinary, so the RE is a literal string. This is an extension, compatible with but not specified by IEEE Std 1003.2 (“POSIX.2”), and should be used with caution in software intended to be portable to other systems. REG_EXTENDED and REG_NOSPEC may not be used in the same call to regcomp().
Compile for matching that ignores upper/lower case distinctions. See regex(7).
Compile for matching that need only report success or failure, not what was matched.
Compile for newline-sensitive matching. By default, newline is a completely ordinary character with no special meaning in either REs or strings. With this flag, “[^” bracket expressions and “.” never match newline, a “^” anchor matches the null string after any newline in the string in addition to its normal function, and the “$” anchor matches the null string before any newline in the string in addition to its normal function.
The regular expression ends, not at the first NUL, but just before the character pointed to by the re_endp member of the structure pointed to by preg. The re_endp member is of type const char *. This flag permits inclusion of NULs in the RE; they are considered ordinary characters. This is an extension, compatible with but not specified by IEEE Std 1003.2 (“POSIX.2”), and should be used with caution in software intended to be portable to other systems.

When successful, regcomp() returns 0 and fills in the structure pointed to by preg. One member of that structure (other than re_endp) is publicized: re_nsub, of type size_t, contains the number of parenthesized subexpressions within the RE (except that the value of this member is undefined if the REG_NOSUB flag was used).

regexec()

The regexec() function matches the compiled RE pointed to by preg against the string, subject to the flags in eflags, and reports results using nmatch, pmatch, and the returned value. The RE must have been compiled by a previous invocation of regcomp(). The compiled form is not altered during execution of regexec(), so a single compiled RE can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be the text of an entire line, minus any terminating newline. The eflags argument is the bitwise OR of zero or more of the following flags:

The first character of the string is treated as the continuation of a line. This means that the anchors “^”, “[[:<:]]”, and “\<” do not match before it; but see REG_STARTEND below. This does not affect the behavior of newlines under REG_NEWLINE.
The NUL terminating the string does not end a line, so the “$” anchor does not match before it. This does not affect the behavior of newlines under REG_NEWLINE.
The string is considered to start at string + pmatch[0].rm_so and to end before the byte located at string + pmatch[0].rm_eo, regardless of the value of nmatch. See below for the definition of pmatch and nmatch. This is an extension, compatible with but not specified by IEEE Std 1003.2 (“POSIX.2”), and should be used with caution in software intended to be portable to other systems.

Without REG_NOTBOL, the position rm_so is considered the beginning of a line, such that “^” matches before it, and the beginning of a word if there is a word character at this position, such that “[[:<:]]” and “\<” match before it.

With REG_NOTBOL, the character at position rm_so is treated as the continuation of a line, and if rm_so is greater than 0, the preceding character is taken into consideration. If the preceding character is a newline and the regular expression was compiled with REG_NEWLINE, “^” matches before the string; if the preceding character is not a word character but the string starts with a word character, “[[:<:]]” and “\<” match before the string.

See regex(7) for a discussion of what is matched in situations where an RE or a portion thereof could match any of several substrings of string.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch is 0, regexec() ignores the pmatch argument (but see below for the case where REG_STARTEND is specified). Otherwise, pmatch points to an array of nmatch structures of type regmatch_t. Such a structure has at least the members rm_so and rm_eo, both of type regoff_t (a signed arithmetic type at least as large as an off_t and a ssize_t), containing respectively the offset of the first character of a substring and the offset of the first character after the end of the substring. Offsets are measured from the beginning of the string argument given to regexec(). An empty substring is denoted by equal offsets, both indicating the character following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of string was matched by the entire RE. Remaining members report what substring was matched by parenthesized subexpressions within the RE; member i reports subexpression i, with subexpressions counted (starting at 1) by the order of their opening parentheses in the RE, left to right. Unused entries in the array (corresponding either to subexpressions that did not participate in the match at all, or to subexpressions that do not exist in the RE (that is, i > preg->re_nsub)) have both rm_so and rm_eo set to -1. If a subexpression participated in the match several times, the reported substring is the last one it matched. (Note, as an example in particular, that when the RE “(b*)+” matches “bbb”, the parenthesized subexpression matches each of the three ‘b’s and then an infinite number of empty strings following the last “b”, so the reported substring is one of the empties.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t (even if nmatch is 0 or REG_NOSUB was specified), to hold the input offsets for REG_STARTEND. Use for output is still entirely controlled by nmatch; if nmatch is 0 or REG_NOSUB was specified, the value of pmatch[0] will not be changed by a successful regexec().

regerror()

The regerror() function maps a non-zero errcode from either regcomp() or regexec() to a human-readable, printable message. If preg is non-NULL, the error code should have arisen from use of the regex_t pointed to by preg, and if the error code came from regcomp(), it should have been the result from the most recent regcomp() using that regex_t. The (regerror() may be able to supply a more detailed message using information from the regex_t.) The regerror() function places the NUL-terminated message into the buffer pointed to by errbuf, limiting the length (including the NUL) to at most errbuf_size bytes. If the whole message will not fit, as much of it as will fit before the terminating NUL is supplied. In any case, the returned value is the size of buffer needed to hold the whole message (including terminating NUL). If errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror() is first ORed with REG_ITOA, the “message” that results is the printable name of the error code, e.g. “REG_NOMATCH”, rather than an explanation thereof. If errcode is REG_ATOI, then preg shall be non-NULL and the re_endp member of the structure it points to must point to the printable name of an error code; in this case, the result in errbuf is the decimal digits of the numeric value of the error code (0 if the name is not recognized). REG_ITOA and REG_ATOI are intended primarily as debugging facilities; they are extensions, compatible with but not specified by IEEE Std 1003.2 (“POSIX.2”), and should be used with caution in software intended to be portable to other systems.

regfree()

The regfree() function frees any dynamically-allocated storage associated with the compiled RE pointed to by preg. The remaining regex_t is no longer a valid compiled RE and the effect of supplying it to regexec() or regerror() is undefined.

There are a number of decisions that IEEE Std 1003.2 (“POSIX.2”) leaves up to the implementor, either by explicitly saying “undefined” or by virtue of them being forbidden by the RE grammar. This implementation treats them as follows.

There is no particular limit on the length of REs, except insofar as memory is limited. Memory usage is approximately linear in RE size, and largely insensitive to RE complexity, except for bounded repetitions.

A backslashed character other than one specifically given a magic meaning by IEEE Std 1003.2 (“POSIX.2”) (such magic meanings occur only in BREs) is taken as an ordinary character.

Any unmatched “[” is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The endpoint of one range cannot begin another.

RE_DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.

A repetition operator (“?”, “*”, “+”, or bounds) cannot follow another repetition operator. A repetition operator cannot begin an expression or subexpression or follow “^” or “|”.

“|” cannot appear first or last in a (sub)expression or after another “|”, i.e., an operand of “|” cannot be an empty subexpression. An empty parenthesized subexpression, “()”, is legal and matches an empty (sub)string. An empty string is not a legal RE.

A “{” followed by a digit is considered the beginning of bounds for a bounded repetition, which must then follow the syntax for bounds. A “{” not followed by a digit is considered an ordinary character.

“^” and “$” beginning and ending subexpressions in BREs are anchors, not ordinary characters.

On successful completion, the regcomp() function returns 0. Otherwise, it returns an integer value indicating an error as described in <regex.h>, and the content of preg is undefined.

On successful completion, the regexec() function returns 0. Otherwise it returns REG_NOMATCH to indicate no match, or REG_ENOSYS to indicate that the function is not supported.

Upon successful completion, the regerror() function returns the number of bytes needed to hold the entire generated string. Otherwise, it returns 0 to indicate that the function is not implemented.

The regfree() function returns no value.

The following constants are defined as error return values:

The regexec() function failed to match.
Invalid regular expression.
Invalid collating element referenced.
Invalid character class type referenced.
Trailing “\” in pattern.
Number in “\digit” invalid or in error.
“[]” imbalance.
The function is not supported.
“\(\)” or “()” imbalance.
“\{\}” imbalance.
Content of “\{\}” invalid: not a number, number too large, more than two numbers, first larger than second.
Invalid endpoint in range expression.
Out of memory.
“?”, “*” or “+” not preceded by valid regular expression.

An application could use:
regerror(code, preg, (char *)NULL, (size_t)0)

to find out how big a buffer is needed for the generated string, malloc() a buffer to hold the string, and then call regerror() again to get the string (see malloc(3C)). Alternately, it could allocate a fixed, static buffer that is big enough to hold most strings, and then use malloc() allocate a larger buffer if it finds that this is too small.

Matching string against the extended regular expression in pattern.
#include <regex.h>

/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* return 1 for match, 0 for no match
*/
int
match(const char *string, char *pattern)
{
	int status;
	regex_t re;

	if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
		return(0);      /* report error */
	}
	status = regexec(&re, string, (size_t) 0, NULL, 0);
	regfree(&re);
	if (status != 0) {
		return(0);      /* report error */
	}
	return(1);
}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very little error checking is done.)

(void) regcomp(&re, pattern, 0);
/* this call to regexec() finds the first match on the line */
error = regexec(&re, &buffer[0], 1, &pm, 0);
while (error == 0) {    /* while matches found */
	/* substring found between pm.rm_so and pm.rm_eo */
	/* This call to regexec() finds the next match */
	error = regexec(&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);
}

No errors are defined.

Enabled

Standard

MT-Safe with exceptions

The regcomp() function can be used safely in a multithreaded application as long as setlocale(3C) is not being called to change the locale.

attributes(7), regex(7), standards(7)

IEEE Std 1003.2 (“POSIX.2”), sections 2.8 (Regular Expression Notation) and B.5 (C Binding for Regular Expression Matching).

June 14, 2017 OmniOS